Serveur d'exploration sur les dispositifs haptiques

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unifying the mechanisms for alkane dehydrogenation and alkene H/D exchange with [IrH2(O2CCF3)(PAr3)2]: the key role of CF3CO2 in the “sticky” alkane route

Identifieur interne : 000A38 ( France/Analysis ); précédent : 000A37; suivant : 000A39

Unifying the mechanisms for alkane dehydrogenation and alkene H/D exchange with [IrH2(O2CCF3)(PAr3)2]: the key role of CF3CO2 in the “sticky” alkane route

Auteurs : Hélène Gérard [France] ; Odile Eisenstein [France] ; Dong-Heon Lee [États-Unis] ; Junyi Chen [États-Unis] ; Robert H. Crabtree [États-Unis]

Source :

RBID : ISTEX:8C90143AA7679DFEF72B9F351BA389AC52F0D351

Abstract

To understand photochemical and thermal alkane activation with IrH2(O2CCF3)(PAr3)2 (Ar =  p-FC6H4), H/D isotope scrambling between alkenes and IrD2(O2CCF3)(PAr3)2 was studied. No unique interpretation of the experimental data was possible, so DFT(B3PW91) calculations on the exchange process in Ir(H)2(O2CCF3)(PH3)2(C2H4) were carried out to distinguish between the possibilities allowed by experiment. Of several possible mechanisms for H/D scrambling, one was strongly preferred and is therefore proposed here. It involves the insertion of the olefin to give an alkyl hydride that reductively eliminates to lead to a transition state that contains an η3-bound alkane. This transition state, which achieves a 1,1′ geminal H/D exchange, is significantly lower in energy than a dihydrido carbene, located as a secondary minimum, eliminating the alternative carbene mechanism. The unexpectedly large binding energy (BDE) of the alkane (“sticky alkane”) to the Ir(O2CCF3)(PH3)2 fragment (BDE = 11.9 kcal mol−1) in this transition state is ascribed in part to the presence of a weakly σ- and π-donating (CF3CO2) group trans to the alkane binding site. The H/D exchange selectivity observed requires that 1,1′-shifts (i.e., M moving to a geminal C–H bond), but not 1,3-shifts, be allowed in the alkane complex. In a key finding, a 1,3-shift in which the metal moves down the alkane chain is indeed found to have a much higher activation energy than the 1,1′-process and is therefore slow in our system. A 1,2-shift has not been considered since it would involve a strong steric hindrance at a tertiary carbon in this system. The mechanism ia an alkane path provides an insight into the closely related photochemical and catalytic thermal alkane dehydrogenation processes mediated by IrH2(O2CCF3)(PAr3)2; the thermal route requires tBuCHCH2 as the hydrogen acceptor. These two alkane reactions are intimately related mechanistically to the isotope exchange because they are proposed to have the same intermediates, in particular the sticky alkane complex. Remarkably, the rate determining step of the thermal (150 °C) alkane dehydrogenation process is predicted to be substitution of the hydrogen acceptor-derived alkane by the alkane substrate.

Url:
DOI: 10.1039/b101715m


Affiliations:


Links toward previous steps (curation, corpus...)


Links to Exploration step

ISTEX:8C90143AA7679DFEF72B9F351BA389AC52F0D351

Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title>Unifying the mechanisms for alkane dehydrogenation and alkene H/D exchange with [IrH2(O2CCF3)(PAr3)2]: the key role of CF3CO2 in the “sticky” alkane route</title>
<author wicri:is="90%">
<name sortKey="Gerard, Helene" sort="Gerard, Helene" uniqKey="Gerard H" first="Hélène" last="Gérard">Hélène Gérard</name>
</author>
<author wicri:is="90%">
<name sortKey="Eisenstein, Odile" sort="Eisenstein, Odile" uniqKey="Eisenstein O" first="Odile" last="Eisenstein">Odile Eisenstein</name>
</author>
<author wicri:is="90%">
<name sortKey="Lee, Dong Heon" sort="Lee, Dong Heon" uniqKey="Lee D" first="Dong-Heon" last="Lee">Dong-Heon Lee</name>
</author>
<author wicri:is="90%">
<name sortKey="Chen, Junyi" sort="Chen, Junyi" uniqKey="Chen J" first="Junyi" last="Chen">Junyi Chen</name>
</author>
<author wicri:is="90%">
<name sortKey="Crabtree, Robert H" sort="Crabtree, Robert H" uniqKey="Crabtree R" first="Robert H." last="Crabtree">Robert H. Crabtree</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:8C90143AA7679DFEF72B9F351BA389AC52F0D351</idno>
<date when="2001" year="2001">2001</date>
<idno type="doi">10.1039/b101715m</idno>
<idno type="url">https://api.istex.fr/document/8C90143AA7679DFEF72B9F351BA389AC52F0D351/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">001734</idno>
<idno type="wicri:Area/Istex/Curation">001734</idno>
<idno type="wicri:Area/Istex/Checkpoint">002952</idno>
<idno type="wicri:doubleKey">1144-0546:2001:Gerard H:unifying:the:mechanisms</idno>
<idno type="wicri:Area/Main/Merge">007B02</idno>
<idno type="wicri:Area/Main/Curation">007507</idno>
<idno type="wicri:Area/Main/Exploration">007507</idno>
<idno type="wicri:Area/France/Extraction">000A38</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a">Unifying the mechanisms for alkane dehydrogenation and alkene H/D exchange with [IrH2(O2CCF3)(PAr3)2]: the key role of CF3CO2 in the “sticky” alkane route</title>
<author wicri:is="90%">
<name sortKey="Gerard, Helene" sort="Gerard, Helene" uniqKey="Gerard H" first="Hélène" last="Gérard">Hélène Gérard</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Structure et Dynamique des Systèmes Moléculaires et Solides (CNRS UMR 5636), Uniersité Montpellier 2, 34095, Montpellier cedex 05</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon-Midi-Pyrénées</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Eisenstein, Odile" sort="Eisenstein, Odile" uniqKey="Eisenstein O" first="Odile" last="Eisenstein">Odile Eisenstein</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire de Structure et Dynamique des Systèmes Moléculaires et Solides (CNRS UMR 5636), Uniersité Montpellier 2, 34095, Montpellier cedex 05</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Languedoc-Roussillon-Midi-Pyrénées</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
<settlement type="city">Montpellier</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">France</country>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Lee, Dong Heon" sort="Lee, Dong Heon" uniqKey="Lee D" first="Dong-Heon" last="Lee">Dong-Heon Lee</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Yale Uniersity, 06511-8107, 225 Prospect Street, CT, New Haen</wicri:regionArea>
<wicri:noRegion>New Haen</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Chen, Junyi" sort="Chen, Junyi" uniqKey="Chen J" first="Junyi" last="Chen">Junyi Chen</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Yale Uniersity, 06511-8107, 225 Prospect Street, CT, New Haen</wicri:regionArea>
<wicri:noRegion>New Haen</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author wicri:is="90%">
<name sortKey="Crabtree, Robert H" sort="Crabtree, Robert H" uniqKey="Crabtree R" first="Robert H." last="Crabtree">Robert H. Crabtree</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Yale Uniersity, 06511-8107, 225 Prospect Street, CT, New Haen</wicri:regionArea>
<wicri:noRegion>New Haen</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">New Journal of Chemistry</title>
<title level="j" type="abbrev">New J. Chem.</title>
<idno type="ISSN">1144-0546</idno>
<idno type="eISSN">1369-9261</idno>
<imprint>
<publisher>The Royal Society of Chemistry.</publisher>
<date type="published" when="2001">2001</date>
<biblScope unit="volume">025</biblScope>
<biblScope unit="issue">009</biblScope>
<biblScope unit="page" from="1121">1121</biblScope>
<biblScope unit="page" to="1131">1131</biblScope>
</imprint>
<idno type="ISSN">1144-0546</idno>
</series>
<idno type="istex">8C90143AA7679DFEF72B9F351BA389AC52F0D351</idno>
<idno type="DOI">10.1039/b101715m</idno>
<idno type="ms-id">b101715m</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1144-0546</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">To understand photochemical and thermal alkane activation with IrH2(O2CCF3)(PAr3)2 (Ar =  p-FC6H4), H/D isotope scrambling between alkenes and IrD2(O2CCF3)(PAr3)2 was studied. No unique interpretation of the experimental data was possible, so DFT(B3PW91) calculations on the exchange process in Ir(H)2(O2CCF3)(PH3)2(C2H4) were carried out to distinguish between the possibilities allowed by experiment. Of several possible mechanisms for H/D scrambling, one was strongly preferred and is therefore proposed here. It involves the insertion of the olefin to give an alkyl hydride that reductively eliminates to lead to a transition state that contains an η3-bound alkane. This transition state, which achieves a 1,1′ geminal H/D exchange, is significantly lower in energy than a dihydrido carbene, located as a secondary minimum, eliminating the alternative carbene mechanism. The unexpectedly large binding energy (BDE) of the alkane (“sticky alkane”) to the Ir(O2CCF3)(PH3)2 fragment (BDE = 11.9 kcal mol−1) in this transition state is ascribed in part to the presence of a weakly σ- and π-donating (CF3CO2) group trans to the alkane binding site. The H/D exchange selectivity observed requires that 1,1′-shifts (i.e., M moving to a geminal C–H bond), but not 1,3-shifts, be allowed in the alkane complex. In a key finding, a 1,3-shift in which the metal moves down the alkane chain is indeed found to have a much higher activation energy than the 1,1′-process and is therefore slow in our system. A 1,2-shift has not been considered since it would involve a strong steric hindrance at a tertiary carbon in this system. The mechanism ia an alkane path provides an insight into the closely related photochemical and catalytic thermal alkane dehydrogenation processes mediated by IrH2(O2CCF3)(PAr3)2; the thermal route requires tBuCHCH2 as the hydrogen acceptor. These two alkane reactions are intimately related mechanistically to the isotope exchange because they are proposed to have the same intermediates, in particular the sticky alkane complex. Remarkably, the rate determining step of the thermal (150 °C) alkane dehydrogenation process is predicted to be substitution of the hydrogen acceptor-derived alkane by the alkane substrate.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>France</li>
<li>États-Unis</li>
</country>
<region>
<li>Languedoc-Roussillon</li>
<li>Languedoc-Roussillon-Midi-Pyrénées</li>
</region>
<settlement>
<li>Montpellier</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Languedoc-Roussillon-Midi-Pyrénées">
<name sortKey="Gerard, Helene" sort="Gerard, Helene" uniqKey="Gerard H" first="Hélène" last="Gérard">Hélène Gérard</name>
</region>
<name sortKey="Eisenstein, Odile" sort="Eisenstein, Odile" uniqKey="Eisenstein O" first="Odile" last="Eisenstein">Odile Eisenstein</name>
<name sortKey="Eisenstein, Odile" sort="Eisenstein, Odile" uniqKey="Eisenstein O" first="Odile" last="Eisenstein">Odile Eisenstein</name>
<name sortKey="Gerard, Helene" sort="Gerard, Helene" uniqKey="Gerard H" first="Hélène" last="Gérard">Hélène Gérard</name>
</country>
<country name="États-Unis">
<noRegion>
<name sortKey="Lee, Dong Heon" sort="Lee, Dong Heon" uniqKey="Lee D" first="Dong-Heon" last="Lee">Dong-Heon Lee</name>
</noRegion>
<name sortKey="Chen, Junyi" sort="Chen, Junyi" uniqKey="Chen J" first="Junyi" last="Chen">Junyi Chen</name>
<name sortKey="Chen, Junyi" sort="Chen, Junyi" uniqKey="Chen J" first="Junyi" last="Chen">Junyi Chen</name>
<name sortKey="Crabtree, Robert H" sort="Crabtree, Robert H" uniqKey="Crabtree R" first="Robert H." last="Crabtree">Robert H. Crabtree</name>
<name sortKey="Crabtree, Robert H" sort="Crabtree, Robert H" uniqKey="Crabtree R" first="Robert H." last="Crabtree">Robert H. Crabtree</name>
<name sortKey="Lee, Dong Heon" sort="Lee, Dong Heon" uniqKey="Lee D" first="Dong-Heon" last="Lee">Dong-Heon Lee</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/HapticV1/Data/France/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A38 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/France/Analysis/biblio.hfd -nk 000A38 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    HapticV1
   |flux=    France
   |étape=   Analysis
   |type=    RBID
   |clé=     ISTEX:8C90143AA7679DFEF72B9F351BA389AC52F0D351
   |texte=   Unifying the mechanisms for alkane dehydrogenation and alkene H/D exchange with [IrH2(O2CCF3)(PAr3)2]: the key role of CF3CO2 in the “sticky” alkane route
}}

Wicri

This area was generated with Dilib version V0.6.23.
Data generation: Mon Jun 13 01:09:46 2016. Site generation: Wed Mar 6 09:54:07 2024